Clinipace is featured in the May issue of Applied Clinical Trials. Dr. Blair Kaegy and Dave Levin looked at the United States’ regulatory pathways and clinical operations when it comes to medical device trials.

For medical devices, good engineering does not guarantee clinical trial or commercial success. The climate for introducing new medical devices into the market has become increasingly difficult in recent years. At times, regulators and device manufacturers seem to be on opposing sides of the playing field.

Regulators often contend with pressure to fast-track approvals while at the same time ensuring product safety and efficacy. On the other hand, manufacturers risk spending time and resources to develop a device, only to not receive approval to go to market. For products that reach the market, several factors, including the reimbursement environment and coverage decisions, can influence profitability.

Executing a successful market strategy involves navigating the US Food and Drug Administration (FDA) approval process, designing and conducting efficient clinical trials, and adeptly evaluating the existing marketplace.

Navigating regulatory pathways

Premarket notification 510(k) and premarket approval. Most Class I devices are exempt from the FDA’s premarket notification 510(k).1 The 510(k) is a premarket submission to demonstrate that a device is as safe and effective as a predicate device. If this is established, clearance is given to the product. Most Class II devices require premarket notification 510(k). Most Class III devices require premarket approval. Premarket approval is the most stringent requirement for a new device. It is expensive and time consuming and requires extensive clinical data.The FDA’s Center for Devices and Radiological Health is responsible for regulating firms who manufacture medical devices sold in the United States. The FDA classifies devices into one of three categories (Table 1). Class I devices have the lowest potential for harm. Examples are bandages, crutches, and examination gloves. Class II devices, such as powered wheelchairs, infusion pumps, EKG machines, and orthopedic drills, are subject to special controls that might include special labeling, performance standards, and postmarket surveillance. Class III devices are the most invasive. Examples would be pacemakers, stents, endovascular grafts, and heart valves. Device classification defines the regulatory requirements for a general device type.

Read the rest of the article in its entirety here.